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EXECUTIVE SUMMARY

This report presents methodology for the near optimal selection of chemical sensors in a chemical sensing
array. While the sensing criteria are task specific, generally one may consider a criterion which maximizes
the signal strength or conversely minimizes global error to be best. The quantification of this criteria pro-
ceeds from the determinant of the inverse Fisher information matrix which is proportional to the global error
volume. If a practitioner has a suitable probabilistic noise model for his or her chemical sensing array and
pool of available sensors, the Fisher information matrix may be parametrized to select the best sensors after
an optimization procedure. Due to the positive definite nature of the Fisher information matrix, convex op-
timization may be used to accomplish this task. This report presents the derivation of the supporting set-up,
expressions, and constraints for this procedure.
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USING FISHER INFORMATION CRITERIA FOR CHEMICAL SENSOR SELECTION
VIA CONVEX OPTIMIZATION METHODS

1. BACKGROUND AND OVERVIEW

The design of chemical sensor arrays from the standpoint of chemical sensor selection and error quan-
tification has historically proceeded as an ad hoc process. Frequently, chemical sensors are developed not
as general purpose sensing devices, but as analyte or chemical class specific detectors. When such single
purpose devices are integrated together as a chemical sensor array, it is unclear a priori how well they will
function in concert with each other to provide expanded capabilities, an observation that is true of the in-
tegration of analytical instruments as well [1]. Further complicating the combination and optimization of
these devices is that it is semantically unclear precisely what the combined device or array ought to do.
Defining what a combined sensing device ought to do is difficult and highly dependent upon the analytical
task the array will be intended to support as well as the specific goals of the array designer.

In the face of an otherwise unspecified sensing task, it is reasonable to assume that the practitioner ought
to attempt to minimize the global error of the array, or conversely, to maximize the signal. This is the ap-
proach is taken by the authors within this report. The question remains, however, as to how to best fulfill
this objective. While a hypothetical practitioner may be able to take an exhaustive approach to sensor array
design by experimentally evaluating all possible sensor combinations, this method quickly becomes infeasi-
ble as the number of sensors relative to array slots becomes coequal or large. In the rare cases when a sensor
array optimization has been attempted (as opposed to using whatever sensors were immediately available), it
is this aforementioned approach of combinatorial experimentation which historically has typified chemical
sensor array design, and thus, severely limited the optimization of sensor arrays. Alternative approaches
to array design based on neural networks and machine learning have also been tried e.g. [1–4]. However,
due to their opacity, these methods fail to provide significant insight into the chemical detection problem
or to suggest subsequent ways to further improve the array design. Consequently, an explicit, precise, and
mathematically rigorous approach to chemical sensor array design and optimization is greatly desired.

Given its wide range of applications it is surprising that the literature centered on chemical sensor array
optimization strategies is rather sparse, despite the relative frequency of reports describing specific sensor
arrays and applications. A notable exception is the Fisher information matrix-based approach proposed by
Pearce and Sánchez-Montaes and theoretically applied to simple linear sensor systems with uncorrelated
noise [5–7]. Unfortunately, this methodology has not been greatly developed since its inaugural set of
papers. In the view of this reports authors, this is most likely due to the mathematical complexities and
difficulties presented by implementing this program as well as the accompanying change in mentality this
forces upon the typical practitioner in the chemical sensing field.

This report further develops the use of the Fisher information matrix as a quantitative descriptor for
hypothetical chemical sensor array scenarios in which a collection of co-located sensors respond to chemical
mixtures resulting from a pool of possible analytes. It assumes that the underlying sensors provide additive
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linear responses with respect to the system of analytes and that they may exhibit statistically correlated
noise. The latter is important as correlated measurement error is realistic, yet frequently unacknowledged in
the literature. The former is generally a reasonable assumption in low concentration regimes, which typify
the bulk of analytical sensing applications, and present the greatest challenges regarding desired sensitivity
and selectivity.

This work describes how the positive (semi)definite nature of the Fisher information matrix enables
algorithmic chemical sensor array design via convex optimization techniques. This property is a rare bit
of mathematical good fortune as the general case of global optimization is generally computationally in-
tractable. The use of elliptically contoured distributions as a general-purpose means of modeling correlated
sensor noise is introduced and developed for convex optimization of sensor arrays. Ultimately, this report
presents a theoretical summary description of this approach to chemical sensor array design and optimization
by showing how to (nearly) best select a subset of sensors for a sensor array from a much larger collection
while assuming correlated noise and the specific challenges of a chemical environment. This effort was
conducted in support of a basic research program seeking to develop better methodology for the design of
chemical sensor arrays using techniques from information theory.

2. FISHER INFORMATION IN CHEMICAL SENSOR ARRAY DESIGN

2.1 General Applicability of Fisher Information to Sensor Systems

Both Fisher information (FI) and its generalization to multi-parameter estimation, the Fisher information
matrix (FIM), are relevant to the design of statistical estimators (i.e. sensors) as their respective inverses act
as lower bounds to the (co)variances of the subject estimator, a property which is referred to as the Cramér-
Rao lower bound [8].

To more concretely motivate this assertion, consider a chemical sensor array response, µµµ(θθθ)+ δδδ (θθθ),
where µµµ(θθθ)and δδδ (θθθ)are the idealized sensor response vector and noise vector respectively. θθθ denotes an
external parameter vector which is environmentally dependent. For chemical sensors and sensor arrays,
this is typically the analyte concentration vector. Such a sensor array response may then be modeled with
a probability density function, ρ(XXX ; µµµ(θθθ)) [5], as follows, µµµ(θθθ) =

∫
dXXX XXXρ(XXX ; µµµ(θθθ)), with a covariance

matrix given by,

ΣΣΣ(θθθ) =
∫

dXXX (XXX−µ(θθθ))(XXX−µ(θθθ))T
ρ(XXX ; µµµ(θθθ)) (1)

A typical goal of sensor array optimization is to minimize the global error of the sensor array. This
quantity is captured by det(ΣΣΣ(θθθ)), the determinant of the covariance matrix. Since ΣΣΣ(θθθ)is a positive definite
matrix, its determinant describes a strictly positive volume that may act as a score or metric for the global
error [9]. Thus, from the standpoint of global noise, the goal of the sensor array designer is to minimize this
determinant. Unfortunately, it is often either impractical or computationally intensive to directly calculate
µµµ(θθθ) and ΣΣΣ(θθθ) in a way that allows for the analytic optimization and design of arrays, particularly if a
complicated estimator is used. It is also worth considering that many different physical sensor system
setups or statistical estimators may be constructed for the same system i.e. sensor response probability
distribution. This multitude of specific estimator possibilities forces the practitioner to seek a design criterion
that is robust in the face of many potentially similar but varying covariance matrices or array responses.
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Fortunately, via the Cramér-Rao inequality, FI/FIM provide a lower bound in the positive definite sense
for the covariance matrix of such a sensor array that is independent of the actual estimator being used.
This provides a useful expression of the fundamental analytical potential of the device. Importantly, if the
practitioner tunes or re-tunes their setup, this quantity will never change. Thus, we conclude that the FI/FIM
provides a robust metric to optimize in the design of chemical sensor arrays.

2.2 Fisher Information and the Cramér-Rao Inequality

Before showing how to utilize the FI/FIM in the context Further manipulation of the integrand yields
optimization for sensor selection, it is informative to first derive the FI/FIM relation to the Cramér-Rao lower
bound. As a prelude, the FI is defined as [10],

f (µ;θ) =
∫

dxρ(µ;θ |x)
(

∂ ln(ρ)
∂θ

)2

(2)

and each element of the FIM itself is defined as,

FFF(µ;θθθ)i j =
∫

dXXXρ(µ;θθθ |XXX)

(
∂ ln(ρ)

∂θi

)(
∂ ln(ρ)

∂θ j

)
(3)

with the FIM reducing to the FI in the univariate case. Informally, the FI/FIM may be thought of as con-
veying how much information an observed random variable, x, or set of random variables, XXX , carry about a
parameter(s), θ or θθθ .

In the event those deterministic parameters θθθ are being statistically estimated, the FI/FIM provides a
lower bound to their (co)variance independent of the employed statistical estimator(s). Beginning with the
univariate case, the FI may be derived [11] by first considering the following expectation value,

EEE[θ̂(x)−θ ] =
∫ (

θ̂(x)−θ
)

ρ(x;θ) = 0 (4)

where θ̂(x) is an unbiased statistical estimator for θ . Next, differentiating by the deterministic parameter
yields,

∂

∂θ

∫
dx
(
θ̂(x)−θ

)
ρ(x;θ) =

∫
dx
(
θ̂(x)−θ

)∂ρ

∂θ
−
∫

dxρ = 0 (5)

Recognizing that since ρ is a probability distribution,

∫
dxρ(x;θ) = 1 (6)

and
∂ρ

∂θ
= ρ

∂ ln(ρ)
∂θ

(7)
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which implies ∫
dx
(
θ̂(x)−θ

)
ρ(x;θ)

∂ ln(ρ)
∂θ

= 1 (8)

Further manipulation of the integrand yields,

∫
dx
((

θ̂(x)−θ
)√

ρ
)(∂ ln(ρ)

∂θ

√
(ρ)

)
= 1 (9)

Applying the Cauchy-Schwartz inequality1 to this manipulated integrand gives,

(∫
dx
((

θ̂(x)−θ
)√

ρ
)(∂ ln(ρ)

∂θ

√
(ρ)

))2

=12

=1≤
(∫

dxρ
(
θ̂(x)−θ

)2
)(∫

dxρ

(
∂ ln(ρ)

∂θ

)2
)

(10)

After some manipulation of the preceding integrand, the expression resolves itself as,

1(∫
dxρ

(
∂ ln(ρ)

∂θ

)2
) ≤ (∫ dxρ

(
θ̂(x)−θ

)2
)
→ 1

f (θ)
≤
(
Var(θ̂)

)
(11)

which is the Cramér-Rao lower bound for the univariate case.

The derivation of the Fisher information matrix (FIM) for the multivariate case [10] is performed in a
similar fashion to the univariate case by first considering,

EEE[θ̂θθ(XXX)−θθθ ] =
∫

dXXXρ(XXX |θθθ)(θ̂θθ(XXX)−θθθ) = 000 (12)

And then differentiating this equation so that,

∂θθθ

∫
dXXXρ(XXX |θθθ)

(
θ̂θθ(XXX)−θθθ

)
=
∫

dXXX (∂θθθ ρ(XXX |θθθ))
(

θ̂θθ(XXX)−θθθ

)
− (∂θθθ θθθ)︸ ︷︷ ︸

III

∫
dXXXρ(XXX |θθθ)︸ ︷︷ ︸

1

= 0 (13)

where ∂θθθ indicates a derivative with respect to the vector θθθ . Rearranging terms as before, it becomes,

∫
dXXXρ∂θθθ ln(ρ)

(
θ̂θθ(XXX)−θθθ

)
=
∫

dXXX
(
(θ̂θθ(XXX)−θθθ)

√
ρ

)
(
√

ρ∂θθθ ln(ρ)) = III (14)

1|〈uuu,vvv〉|2 ≤ 〈uuu,uuu〉 · 〈vvv,vvv〉 where uuu and bbb are vectors with the inner product 〈·, ·〉
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and applying the Cauchy-Schwartz inequality gives,

III ≤
∫

dXXXρ

((
θ̂θθ(XXX)−θθθ

)(
θ̂θθ(XXX)−θθθ

)T
)
·
∫

dXXXρ

(
(∂θθθ ln(ρ))(∂θθθ ln(ρ))T

)
(15)

so that the FIM provides a lower bound to the covariance matrix,

FFF(µµµ;θθθ)−1 ≤ ΣΣΣ(θθθ) (16)

with the ≤ relation is in the sense of a positive definite matrix and the FIM and covariance matrix (FFFand ΣΣΣ

respectively) defined as,

FFF(µµµ;θθθ) =
∫

dXXXρ

(
(∂θθθ ln(ρ))(∂θθθ ln(ρ))T

)
(17)

and

ΣΣΣ(θθθ) =
∫

dXXXρ

(
θ̂θθ(XXX)−θθθ

)(
θ̂θθ(XXX)−θθθ

)T
(18)

Clearly, the so-derived FIM also implies the univariate case.

2.3 Derivation of a Lower Bound to the Fisher Information Matrix

While the FI and the FIM derived in the prior section are potentially useful for optimizing a sensor
array, they nonetheless require a specific noise model for the sensor array which may not be forthcoming
in practice. Nonetheless, it is highly desirable for a practitioner to be able to select relevant sensors for an
array in a fashion which provides some reasonable assurance of being optimal to some degree. The following
lower bound to the FI and FIM provides such an assurance while satisfying the need to be a metric defined
by experimentally accessible parameters. Moreover, because it in essence defines a FI/FIM for a Gaussian
model, it is amenable to the convex optimization framework which will be subsequently developed.

For purposes of expediency, first consider generic vector functions [12], hhh(yyy) and fff (xxx), in the vector
expression,

f̂ff (xxx) = EEExy[hhh(yyy) fff (xxx)T ]EEEx[ fff (xxx) fff (xxx)T ]−1 fff (xxx) (19)

and the positive semidefinite matrix expectation value,

EEExy[
(

hhh(yyy)− f̂ff (xxx)
)(

hhh(yyy)− f̂ff (xxx)
)T

]≥ 000 (20)

After expansion and rearrangement of the prior expression, this yields the following matrix, expression
assuming a joint probability distribution, p(xxx,yyy),

EEEy[hhh(yyy)hhh(yyy)T ]≥ EEExy[hhh(yyy) fff (xxx)T ]EEEx[ fff (xxx) fff (xxx)T ]−1EEExy[ fff (xxx)hhh(yyy)T ] (21)
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Setting hhh(yyy) = ∂ ln pyyy(yyy;θθθ)
∂θθθ

and fff (xxx) = (yyy−µµµ(θθθ)) and then integrating appropriately yields the following
matrix inequality,

FFF(µ;θθθ)≥
(

∂ µµµ(θθθ)

∂θθθ

)T

ΣΣΣ
−1(θθθ)

(
∂ µµµ(θθθ)

∂θθθ

)
(22)

which provides a lower bound to the Fisher information matrix [12].

It is noteworthy that this lower bound is the Fisher information matrix for a system with parameter
independent Gaussian noise. This result suggests two possible strategies for analyzing and optimizing a
sensor array based on the knowledge available regarding the noise characteristics of the sensor. First, it
suggests that if one only has experimentally derived sensor responses and covariances available for a sensor
system one should initially optimize assuming Gaussian noise as this represents a worst case for such a
system and is thus a conservative optimization strategy. Conversely, if one has knowledge of a specific noise
model for a chemical sensor system that is not Gaussian with constant noise, it suggests that it would be
beneficial to use that model instead to optimize the array since one should always be able to do better than
a comparable Gaussian system.

3. CONVEX OPTIMIZATION OF THE FISHER INFORMATION MATRIX

3.1 Background on Convex Optimization

Recall the definition of the FIM,

FFF(µµµ;θθθ) =
∫

dXXXρ(µµµ;θθθ |XXX)

(
∂ ln(ρ)

∂θθθ

)(
∂ ln(ρ)

∂θθθ

)T

(23)

Due to its structure as matrix defined by an integral over an exterior vector product, the FIM is a positive
semidefinite matrix, i.e. aaaT FFFaaa ≥ 0, where aaa is an arbitrary real-valued vector of appropriate dimension.
Positive semidefiniteness is crucial as this property allows for the so-described sensor array to be optimized
with respect to sensor configuration via convex optimization techniques.

In order to properly implement this idea for sensor array optimization, specifications for of an appropri-
ate objective function as well as a set of constraints are required. To setup this problem, first the objective
function will be defined and then the relevant constraints detailed. In the process of setting up the con-
straints and detailing the supporting mathematical elements for the convex optimization, appropriate sensor
responses and noise models for the chemical sensor array will be proposed.

Barring other priorities or specific knowledge of the analytical task, a reasonable design goal for a gen-
eral purpose chemical sensor array is to minimize the global error (maximize the signal) of the chemical
sensor array. A useful measure for this global error is the volume of the ellipsoid cast by the covariance ma-
trix of the relevant estimators since this provides a reasonable metric for the global uncertainty of estimated
chemical concentrations and thus for the discernability of similar chemical mixtures. The volume of this
error ellipsoid is given by the following expression [9],

vvvooolll(ΣΣΣ) =
2πd/2

dΓ
(d

2

)det(ΣΣΣ)1/2 (24)
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where ΣΣΣ is the covariance matrix and d is the dimension of the volume. Minimizing this volume term,
vvvooolll(ΣΣΣ), ultimately requires the minimization of det(ΣΣΣ)1/2 as all other terms for the volume expression are
related to the system dimension, which is not subject to optimization.

Since the composition of convex functions are themselves convex and both the square root function of
x > 0 and the determinant of a positive semidefinite matrix like ΣΣΣ are convex functions themselves, the
objective function may be further simplified todet(ΣΣΣ). For reasons of subsequent numerical convenience,
this objective function is composed with the natural logarithm to give ln(det(XXX)) as the final objective
function. It is proven below that this function is concave (convex up) for all positive semidefinite matrices,
XXX , by showing that this function satisfies concavity [13].

First consider the following,

g(t) = ln(det(XXX))

= ln(det(ZZZ + tVVV )) (25)

where XXX = ZZZ + tVVV > 0. XXX , ZZZ, and VVV are positive definite matrices and t ≥ 0 is a scalar parameter. Manipu-
lating the matrix function in question to ensure positive definite matrices yields,

g(t) = ln(det(ZZZ + tVVV ))

= ln(det(ZZZ1/2(III + tZZZ−1/2VVV ZZZ−1/2)ZZZ1/2))

= ln(det(III + tVVV ))+ ln(det(ZZZ)) (26)

so that the first and second derivatives of g(t) may be taken as,

g′(t) =
n

∑
i=1

λi

1+ tλi
(27)

and

g′′(t) =−
n

∑
i=1

λ 2
i

(1+ tλi)2 (28)

Since λi > 0 due to the definition of positive definite matrices, it follows that g′(t) > 0 and g′′(t) < 0 for
t ≥ 0. This implies that ln(det(XXX)) is a convex function for positive definite XXX [13].

Having shown that this objective function is valid for the optimization problem, it is now important
to consider what variables to actually use to optimize the ln(det(XXX)) objective. Specifically, it is not the
covariance matrix that is being input into the objective function, but the inverse Fisher information matrix.
This substitution is justified due to the Cramér-Rao lower bound (just as the Gaussian FIM substitution
would be in the case of the upper bound).
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Consequently, it is the FIM of a probability distribution and not its covariance matrix which is parametrized
for optimization and the objective function thus becomes,

ln(det(CCC(θθθ)))≥ ln(det(FFF−1(θθθ ;sss))) =− ln(det(FFF(θθθ ;sss))) (29)

where sss are the slack variables subject to the optimization. For a given convex optimization in addition to
the inequality and equality constraints, the practitioner must supply the convex optimization routine with
gradient and Hessian routines for the objective function in the slack variables as well [13].

The gradient for − ln(det(FFF(θθθ ;sss))), the objective function, is given by,

−∇ ln(det(FFF(θθθ ;sss))) =−
#(sss)

∑
i=1

êeeiTr(FFF−1 ∂FFF
∂ si

) (30)

where #(sss) is the cardinality of the slack variables, sss, and êeei denote the relevant vector basis set. The matrix
elements for the Hessian, hhh(θθθ ;sss), are defined by,

hi j(θθθ ;sss) =− ∂ 2

∂ si∂ s j
ln(det(FFF(θθθ ;sss))) = Tr(FFF−1 ∂FFF

∂ si
FFF−1 ∂FFF

∂ s j
)−Tr(FFF−1 ∂ 2FFF

∂ si∂ s j
) (31)

To evaluate these quantities it is necessary to first choose a noise model, so that the FIM may be properly
parametrized for optimization. This matter is discussed in the following section.

3.2 Elliptically Contoured Distributions: A Correlated Noise Model for Chemical Sensor Arrays

Elliptically contoured distributions (ECDs) [14] are a class of statistical model which generalize the mul-
tivariate Gaussian and includes many standard statistical models like the multivariate Students t-distribution.
They are defined as follows

g((xxx−µµµ(θθθ))T ΣΣΣ(θθθ)(xxx−µµµ(θθθ)))

N(θθθ)
(32)

where g(·) is an arbitrary univariate probability distribution, θθθ are the external deterministic parameters
being bounded by the FIM, µµµ(θθθ) is the mean response function, is a positive definite scale matrix which
reduces to the covariance matrix if g(·) = exp(−(·)), and N(θθθ) is the normalization constant for the prob-
ability density function. These distributions are chosen to model the correlated noise of chemical sensor
arrays as they can model correlation among sensor responses while remaining both analytically tractable
and relatively general.

Examples of FIMs for various well-known probability distributions are given by following: The FIM for
the multivariate Gaussian is given by the so-called Slepian-Bangs formula as [15],

Fi j(θθθ) = 2
(

∂ µµµT

∂θi

)
ΣΣΣ
−1(θθθ)

(
∂ µµµ

∂θ j

)
+Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j) (33)
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where ΣΣΣi =
∂ΣΣΣ

∂θi
and the FIM for the multivariate Student-t distribution [15] is

Fi j(θθθ) =2
d +M

d +M+1

(
∂ µµµT

∂θi

)
ΣΣΣ
−1(θθθ)

(
∂ µµµ

∂θ j

)
− 1

d +M+1
Tr(ΣΣΣ−1

ΣΣΣi)Tr(ΣΣΣ−1
ΣΣΣ j)

+
d +M

d +M+1
Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j) (34)

where d is the degrees of freedom, a distribution specific quantity, of the Student-t distribution and M is the
rank of the scale matrix ΣΣΣ.

The FIM for ECDs [15] has been recently derived as a generalization of the Slepian-Bangs formula as

Fi j(θθθ) =2
EEE p[qφ 2(q)]

M

(
∂ µµµT

∂θi

)
ΣΣΣ
−1(θθθ)

(
∂ µµµ

∂θ j

)
+

[
EEE p[q2φ 2(q)]
M(M+1)

−1
]

Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣ j)

+
EEE p[q2φ 2(q)]
M(M+1)

Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣ j) (35)

where M is the scalar dimensionality or rank of the scale matrix, ΣΣΣ ∈ RM×M, EEE p[·] denotes an expectation
value with regard to a probability density,

p(q) =
1

δM,g
qM−1g(q) (36)

so that,

EEE p[·] =
1

δM,g

∫
∞

0
dq(·)qM−1g(q) (37)

where

δM,g =
∫

∞

0
dt tM−1g(t) (38)

and

φ(t) =
g′(t)
g(t)

(39)

Using ECDs and their corresponding FIMs as reasonable models for correlated chemical sensor arrays
allows the practitioner to propose a specific model for convex optimization.



10 Adam C. Knapp et. al.

3.3 Gradients and Hessians for the Fisher Information Matrices of Elliptically Contoured Distribu-
tions

Recall from the prior section that the model dependent components of the gradient and Hessian matrix
for the convex optimization of the FIM are the matrices ∂FFF

∂ sp
and ∂ 2FFF

∂ sp∂ sq
. The expressions for the matrix

elements of these matrices are developed in the following subsection.

First, express the ECD FIM elements as follows,

FFFECD(i, j) = α
∂ µµµT

∂θi
ΣΣΣ
−1 ∂ µµµ

∂θ j︸ ︷︷ ︸
G

+β Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣ j)︸ ︷︷ ︸
J

+γ Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣ j)︸ ︷︷ ︸

K

(40)

where α , β , and γ are distribution specific constants that are not dependent upon the slack variables, sp and
sq, and are given by,

α =
2EEE p[qφ 2(q)]

M
(41)

β =
EEE p[q2φ 2(q)]
M(M+1)

−1 (42)

γ =
EEE p[q2φ 2(q)]
M(M+1)

(43)

where the subscript p denotes an average with respect to p(q) and ΣΣΣi =
∂ΣΣΣ

∂θi
, and G, J, and K are so defined

to simplify the derivation and presentation.

The derivatives of each of these sub-expressions are given as follows,

∂G
∂ sp

=
∂ 2µµµT

∂ sp∂θi
ΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1 ∂ 2µµµ

∂ sp∂θ j
(44)

∂J
∂ sp

= Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣi +ΣΣΣ

−1
ΣΣΣspi)Tr(ΣΣΣ−1

ΣΣΣ j)+Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣsp j) (45)

∂K
∂ sp

= Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣspiΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsp j) (46)

where ΣΣΣsp =
∂ΣΣΣ

∂ sp
and ΣΣΣspi =

∂ 2ΣΣΣ

∂ sp∂θi
.
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The Hessian elements for the G and J terms are given by,

∂ 2G
∂ sp∂ sq

=
∂ 3µµµT

∂ sp∂ sq∂θi
ΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ 2µµµT

∂ sp∂θi
ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ 2µµµT

∂ sp∂θi
ΣΣΣ
−1 ∂ 2µµµ

∂ sq∂θ j
+

∂ 2µµµT

∂ sq∂θi
ΣΣΣ
−1 ∂ 2µµµ

∂ sp∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1 ∂ 2µµµ

∂ sp∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1 ∂ 3µµµ

∂ sq∂ sp∂θ j
+

∂ 2µµµT

∂ sq∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣsqspΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ 2µµµ

∂ sq∂θ j
(47)

∂ 2J
∂ sp∂ sq

= Tr(ΣΣΣ−1
ΣΣΣ j)Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣi +ΣΣΣ
−1

ΣΣΣsqspΣΣΣ
−1

ΣΣΣi +ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣi)

+Tr(ΣΣΣ−1
ΣΣΣ j)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqi +ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspi +ΣΣΣ
−1

ΣΣΣsqspi)

+Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣi +ΣΣΣ

−1
ΣΣΣspi)Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣsq j)

+Tr(ΣΣΣ−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣi +ΣΣΣ

−1
ΣΣΣsqi)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣsq j)

+Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣsqspΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsq j +ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣsp j +ΣΣΣ
−1

ΣΣΣsqsp j) (48)

and the Hessian element for K is setup as follows,

∂ 2K
∂ sp∂ sq

=
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j)︸ ︷︷ ︸
A1

+
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣspiΣΣΣ
−1

ΣΣΣ j)︸ ︷︷ ︸
A2

+
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j)︸ ︷︷ ︸
A3

+
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣsp j)︸ ︷︷ ︸
A4

(49)
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where the derivatives of each of the sub-terms of the expression are given by the following:

∂A1

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspsqΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣsqiΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsq j) (50)

∂A2

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspiΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspsqiΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspiΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspiΣΣΣ
−1

ΣΣΣsq j) (51)

∂A3

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspiΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsqspΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣsq j) (52)

∂A4

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣsp j +ΣΣΣ
−1

ΣΣΣsqiΣΣΣ
−1

ΣΣΣsp j +ΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣsp j +ΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣspsq j) (53)

where ΣΣΣab =
∂ 2ΣΣΣ

∂a∂b and ΣΣΣabc =
∂ 3ΣΣΣ

∂a∂b∂c .

3.4 Defining the Mean Response Vector, ECD Scale Matrix, Slack Variables and their Constraints
for Convex Optimization

This leaves two system specific quantities, µµµ(θθθ), the sensor response vector, and ΣΣΣ(θθθ), the scale matrix,
still to be defined for the convex optimization as well as the slack variables themselves for the optimization.
Setting up both of these quantities to both remain true to the goal of sensor selection while defining a
properly positive definite argument as required by the definition of an ECD requires careful consideration.

Among the first things to define are how many slack variables are required for this problem and thus
what their uses and constraints might be. Since the goal is to select sensors to fill an array from sensor
choices and because any sensor can fill any slot, nm, variables are needed so that any sensor can be put in
any slot of the array.

This decision for the sensors yields the following constraints,

∀i : 0≤
m

∑
j=1

si j ≤ 1 (54)

or

∀i :‖ sssi‖2 ≤ 1 (55)

since each sensor can only be used at most once in the sensor array.

∀ j :
n

∑
i=1

si j = 1 (56)
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because each sensor slot must be filled where the subscripts i and j denote the placement of a sensor i in an
array slot j.

The slack variables themselves are also used in the context of the ECDs since sensor selection implicitly
redefines the underlying noise model. Supporting this observation is the parametrized mean response vector
µµµ as well as the gradient and Hessian,

µ j(θθθ) =
n

∑
i=1

si j µi(θθθ) (57)

µµµ(θθθ) =
m

∑
j=1

êee j µ j(θθθ) (58)

∂ µµµ

∂ si j
= êee j

∂ µ j

∂ si j
= êee j µi (59)

∂ 2µµµ

∂ sp∂ sq
= 0 (60)

The ECD specific scale matrix, ΣΣΣ(θθθ ;sss), as well as its gradient and Hessian terms are parametrized and
constructed in analogous way to the response vector µµµ as follows,

ΣΣΣ(θθθ ;sss) = σσσ(θθθ ;sss)⊗σσσ(θθθ ;sss)T (61)

σ j(θθθ ;sss) =
n

∑
i

si jσi(θθθ) (62)

σσσ(θθθ ;sss) =
m

∑
j=1

êee jσ j(θθθ ;sss) (63)

∂σσσ

∂ si j
= êee j

∂σ j

∂ si j
= êee j σi (64)

∂ 2σσσ

∂ sp∂ sq
= 0 (65)

∂ΣΣΣ

∂ si j
=

∂σσσ

∂ si j
⊗σσσ(θθθ ;sss)T +σσσ(θθθ ;sss)⊗ ∂σσσ

∂ si j

T

(66)
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∂ 2ΣΣΣ

∂ sp∂ sq
=

∂ 2σσσ

∂ sp∂ sq
⊗σσσ(θθθ ;sss)T +

∂σσσ

∂ sp
⊗ ∂σσσT

∂ sq
+

∂σσσ

∂ sq
⊗ ∂σσσ

∂ sp

T

+σσσ(θθθ ;sss)⊗ ∂ 2σσσT

∂ sp∂ sq

=
∂σσσ

∂ sp
⊗ ∂σσσT

∂ sq
+

∂σσσ

∂ sq
⊗ ∂σσσ

∂ sp

T

(67)

for the scale matrix ΣΣΣ, where ⊗ denotes the outer product.

3.5 Applying Convex Optimization: Interpreting the Results

Before running the convex optimization, a test point for the optimization needs to be found which sat-
isfies all of the constraint values. This point implicitly defines the subset region of the positive definite
matrices available for the optimization. This is necessary as there is an inherent degeneracy in assigning
sensors to slots since in an optimized setting one could permute sensors with slots and have the same an-
swer. However, in order continuously reach another region where the sensors and slots are permuted, one
would have to travel through an area where the FIM becomes singular by continuity. Consequently each
point exists in a subregion defined by these singular bounds, which incidentally have an infinite determinant
since the objective function is the determinant of the inverse FIM. Since all of these regions are identical by
relabeling, optimizing in one subregion is as good as optimizing in any of the others. Due to the now de-
fined subregion being described by positive definite matrices this remains a problem in convex optimization.
Thus, by selecting a specific starting point one breaks the permutation symmetry of this problem while still
allowing for the usage of convex optimization in sensor selection.

On a more practical note, a unique starting point which satisfies this problems constraints may be defined
as follows:

Consider the sensor collection ordered in a list. Take the first m sensors and assign each one
to a unique array slot j. Set the corresponding slack variables for this sensor-slot selection equal,
si j, to 1. Set all other slack variables equal to 0.

This defines a unique starting point for the optimization which obeys the system constraints.

After the appropriate convex optimization has been performed, a vector corresponding to numeric values
for the slack variable vector sss will be output. Assuming that the optimization has preceded correctly, the
vector should have m slack variables close to 1 (Otherwise sort the slack variable vector in numeric order
and choose the top m). Round these up to 1 and all other variables down to 0. This resulting vector tells the
practitioner which sensors have been selected for which slots by whether or not a slack variable is 1 or 0.
If it is 1 then the corresponding sensor and slot has been selected; otherwise it has not. This completes the
sensor selection process.

4. CONCLUSIONS

This memo report has considered sensor selection for a nonspecific chemical array under the influence
of correlated noise. It has used global error minimization or conversely signal maximization as a criteria for
optimization by considering the determinant of the covariance matrix as idealized by the Fisher information
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matrix as a scalar criterion for this optimization. Using these definitions as well as the mathematical prop-
erties of this underlying matrix, it has been able to set up this optimization problem in the context of convex
optimization and has developed this scenario along with the supporting mathematics for this methodology.

It has presented two distinct approaches to this optimization problem. First it has considered and pre-
sented the optimization methodology for a family of solved non-trivial correlated noise models, the ellipti-
cally contoured distributions, which include many standard distributions such as the multivariate Gaussian
and Student-t distributions. It has also taken a more practical approach and considered a lower bound to the
Fisher information matrix which would allow a working practitioner to select sensors with only knowledge
of a correlation matrix and the sensor response using the same framework and methodology. While the
later of these two approaches would not necessarily be optimal it could be significantly better than what a
practitioner might develop through trial and error.
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